1,622 research outputs found

    Study of W± boson in the ALICE muon spectrometer: considerations and analysis using the HLT tool

    Get PDF
    W± bosons produced in proton-proton collisions can be observed in the ALICE muon spectrometer via their decay into single muons at a transverse momentum, pt ~ Mw/2 40 GeV/c. However the identification of these single muons is complicated by a large amount of muonic background, especially in the low pt region. Therefore, it is necessary to apply precise pt cuts below the region of interest. This can be done by means of the High Level Trigger (HLT). In this paper we present the performance of detecting high pt muons at the HLT level. In order to improve the momentum resolution of the L0 trigger, fast clusterization of the tracking chambers together with L0 trigger matching and fast tracking reconstruction is applied. This will reduce the background in the high pt muon analysis

    A New Approach to the Optimal Target Selection Problem

    Get PDF
    Optimally selecting a subset of targets from a larger catalog is a common problem in astronomy and cosmology. A specific example is the selection of targets from an imaging survey for multi-object spectrographic follow-up. We present a new heuristic algorithm, HYBRID, for this purpose and undertake detailed studies of its performance. HYBRID combines elements of the simulated annealing, MCMC and particle-swarm methods and is particularly successful in cases where the survey landscape has multiple curvature or clustering scales. HYBRID consistently outperforms the other methods, especially in high-dimensionality spaces with many extrema. This means many fewer simulations must be run to reach a given performance confidence level and implies very significant advantages in solving complex or computationally expensive optimisation problems.Comment: 10 pages, 14 figures, Extended version accepted to Astron. Astrophy

    Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    Full text link
    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.Comment: 8 pages 4 figure

    Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    Get PDF
    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for publicatio

    Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons

    Get PDF
    We present the first experimental results on the use of a thick aligned Si crystal acting as a quarter wave plate to induce a degree of circular polarisation in a high energy linearly polarised photon beam. The linearly polarised photon beam is produced from coherent bremsstrahlung radiation by 178 GeV unpolarised electrons incident on an aligned Si crystal, acting as a radiator. The linear polarisation of the photon beam is characterised by measuring the asymmetry in electron-positron pair production in a Ge crystal, for different crystal orientations. The Ge crystal therefore acts as an analyser. The birefringence phenomenon, which converts the linear polarisation to circular polarisation, is observed by letting the linearly polarised photons beam pass through a thick Si quarter wave plate crystal, and then measuring the asymmetry in electron-positron pair production again for a selection of relative angles between the crystallographic planes of the radiator, analyser and quarter wave plate. The systematics of the difference between the measured asymmetries with and without the quarter wave plate are predicted by theory to reveal an evolution in the Stokes parameters from which the appearance of a circularly polarised component in the photon beam can be demonstrated. The measured magnitude of the circularly polarised component was consistent with the theoretical predictions, and therefore is in indication of the existence of the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for publicatio
    • …
    corecore